
TimeDB 2.0
Version Beta 4

September 1999

A TimeConsult Product

www.TimeConsult.com

© Andreas Steiner

2 ©TimeConsult

This documentation describes the installation and use of TimeDB 2.0 Beta 4.

Information presented here is accurate as of the time of writing, but is
subject to change without notice.

Please send any questions, comments, suggestions and bug reports to
steiner@timeconsult.com.

In no event shall TimeConsult or any persons working for TimeConsult be liable for
any consequential, incidental or special damages whatsoever (including without
limitation damages for loss of critical data, loss of profits, interruption of business,
and the like) arising out of the use or inability to use this software.

Copyright © 1995-1999 by Andreas Steiner, TimeConsult.

3 ©TimeConsult

Table of Contents

WHAT IS TIMEDB?...4

FEATURES OF TIMEDB...5

WHAT IS NEW IN TIMEDB 2.0? ..5
WHAT IS NEW IN THE BETA VERSION 4 OF TIMEDB 2.0 ...6
WHAT IS MISSING IN THE BETA VERSION 4 OF TIMEDB 2.0...6
DIFFERENCES TO ATSQL2...6

SOFTWARE REQUIREMENTS ...7

COMPATIBILITY ..8

SUPPORTED DBMS...8
RESTRICTIONS CAUSED BY UNDERLYING DBMS..8

USING THE GUI OF TIMEDB 2.0..9

INSTALLING TIMEDB 2.0...9
USING THE INPUT TEXT AREA ..9
EXECUTING A FILE..10

USING THE API OF TIMEDB 2.0..11

SETTING UP THE ENVIRONMENT..11
THE TIMEDB CALL INTERFACE (TDBCI) ...11
AN EXAMPLE...12

Creating a TDBCI Object ..12
Setting the Preferences..12
Opening and closing a Database ...13
Creating the Metadata..13
Queries and Query results..13

THE TEMPORAL ASPECTS OF TIMEDB 2.0..15

TIMEFLAG SEMANTICS...15
NESTING OF TIMEFLAGS..15
TEMPORAL EXPRESSIONS AND COMPARISON OPERATIONS..17
CALENDAR..18

A. LITERATURE ...19

B. GRAMMAR...20

C. TIMEDBÕS API..23

4 ©TimeConsult

What is TimeDB?
TimeDB supports a temporal version of SQL called ATSQL2 [SBJS96a, SBJS96b,
SBJS98] by translating temporal SQL statements into standard SQL statements
which then are evaluated using a commercial database management system
(DBMS). TimeDB thus supports a uniform way to implement applications dealing
with historical (or temporal) data. By using TimeDB, it is possible to store and
manage not only a single database state (as it is done in all the currently available
commercial DBMS) but several ones. Research in the area of temporal databases
has shown that while it is usually no problem to store the validity time periods of
data in commercial DBMS in one way or another, it is very cumbersome to query
and update such data and keep it consistent. These drawbacks are eliminated if a
temporal DBMS is used.

TimeDB, however, is not a temporal DBMS itself but is a frontend to a relational
DBMS. By translating temporal SQL into standard SQL statements, TimeDB
supports temporal functionality for a non-temporal relational DBMS. The
advantage of this approach is that existing databases stored in a commercial
DBMS and applications accessing this data still can be used while new
applications dealing with temporal data can be added. These applications then
access the databases via TimeDB. This is depicted in the following figure :

DBMS

Application1 Legacy ApplicationApplication2

5 ©TimeConsult

Features of TimeDB
TimeDB 1.0 was implemented during the design of ATSQL2 [SBJS96a, SBJS96b].
It helped refining the language and eliminating weaknesses. This prototype
system was implemented at the Swiss Federal Institute of Technology (ETH
Z�rich) as part of a Ph. D. thesis [S98]. The language implemented in TimeDB 1.0
supports
· temporal queries
· temporal insert, update and delete statements
· temporal tables and views
· temporal table constraints and assertions

 It supports valid time (when was a fact true in the real world) and transaction time
(when was a fact stored in the database). These time lines are treated
orthogonally which means that for each valid-time statement a corresponding
transaction-time statement exists.

What is new in TimeDB 2.0?

 There are several important differences between TimeDB 1.0 and TimeDB 2.0 :
· TimeDB 2.0 was implemented in Java and thus is platform independent
· TimeDB 2.0 uses JDBC and thus can be used with many different DBMS
· TimeDB 2.0 has a GUI and thus is easier to install and use
· TimeDB 2.0 is optimised with respect to the creation of auxiliary tables
· TimeDB 2.0 has a native call interface (TDBCI) which Java applications can

use to execute ATSQL2 statements

 TimeDB 2.0 is a re-implementation of TimeDB 1.0. There were several reasons
why we implemented TimeDB 2.0 from scratch. First, with the spreading of the
object-oriented programming language Java, it becomes possible to run the same
code on different platforms without extra effort. Thus, we decided to go for a
platform independent implementation for the next release of TimeDB in order to
supply it to as many users as possible. Second, there were many inquiries of
users who wanted to use TimeDB together with a commercial relational DBMS.
TimeDB 1.0 could only be used with the product of a single DBMS vendor, namely
Oracle, since
TimeDB 1.0 used the native Oracle Call Interface (OCI). However, using JDBC
[HCF97], a standardised way to access data in different DBMS is possible. Thus,
the DBMS interface of TimeDB 2.0 is based on JDBC and hence is independent of
any specific DBMS. Third, a graphical user interface (GUI) is helpful to simplify the
installation procedure and use of TimeDB. Fourth, TimeDB 2.0 generates less
auxiliary tables during statement evaluation, e. g. snapshot queries do not
generate any auxiliary tables anymore. Last but not least, TimeDB 2.0 Beta 4
supports a native API (TimeDB Call Interface, TDBCI) to allow the development of
temporal applications based on TimeDB. Additionally, we plan to add query

6 ©TimeConsult

optimisation (e. g. semantical query optimisation) to provide faster evaluation of
ATSQL2 statements.

What is new in the beta version 4 of TimeDB 2.0

The following features were added to TimeDB 2.0 since release 2.0 Beta 1:

· Aggregate Functions
· GROUP BY clause1

· HAVING clause1

· Table and column constraints: Primary Key, Referential Integrity, Check
· TDBCI, a native call interface for ATSQL2 statements

What is missing in the beta version 4 of TimeDB 2.0

 The beta version 4 of TimeDB 2.0 does not support all of the features found in
TimeDB 1.0. The full version of TimeDB 2.0, however, will subsume the
functionality of TimeDB 1.0. The features missing in the beta version 4 are:

· No update operation (only insert and delete)
· No transaction time and bitemporal operations (snapshot, nonsequenced valid

and valid time operations are supported)
· Only a single minimal calendar is supported

Differences to ATSQL2

The temporal SQL supported in TimeDB 2.0 is slightly different from ATSQL2 as it
is proposed in [SBJS96a, SBJS96b]. In the beta version, interval expressions after
timeflags (as shown in the example below) may only refer to constant values.
References to timestamps of tables are not allowed.

validtime period [1980-1990) select ...

1 GROUP BY and HAVING clause are not supported for CloudscapeÕs JBMS

7 ©TimeConsult

Software Requirements
In order to run TimeDB, the following software is needed:

· Java Runtime Environment 1.1 (or newer)
· A DBMS, e.g. Oracle (Version 8), Sybase (Version 11.5) or CloudscapeÕs

JBMS (Version 1.1 or newer)
· A JDBC driver for the DBMS

You also need a login and password for the database you will use, the JDBC
driver name and the URL to connect to your database (this information should be
provided in the documentation of the JDBC driver).

If you plan to develop applications which access temporal data via TimeDB, you
also need a Java development kit (JDK).

8 ©TimeConsult

Compatibility

Supported DBMS

 While we developed TimeDB using the Oracle DBMS (Version 8), we also tested it
on SybaseÕs DBMS (Adaptive Server Enterprise 11.5) and CloudscapeÕs JBMS
(Version 1.1). We further plan to support DBMS such as

· MicrosoftÕs Access
· SQL Server 7.0
· Informix

Other DBMS may be supported on demand.

Restrictions caused by underlying DBMS

Apart from the different data types supported in the different commercial DBMS,
there is another restriction you should be aware of. CloudscapeÕs JBMS and
Sybase do not support the non-temporal set operations intersect and except.
These operations thus are not available in TimeDB, too, if it is used with one of
these DBMS. However, you still can calculate temporal intersect and except
operations.

9 ©TimeConsult

Using the GUI of TimeDB 2.0

Installing TimeDB 2.0

If you would like to run TimeDB 2.0 using its graphical user interface (GUI), the first
step is to set up the Java environment correctly. To the classpath of your Java
environment add the path to the directory containing the TimeDB classes (e. g.
C:\TimeDB2.0B4\classes) and the path to the classes containing the JDBC driver.
Start TimeDB 2.0 using a command which looks like

java -classpath <set your classpath here> TimeDB

After a few seconds, the main window of TimeDB should open up (see Figure 1 :
Main Window). The next step is to configure TimeDB. Select item Preferences in
menuTimeDB. A new window opens where you can set the path to the TimeDB
directory (application dir), the JDBC driver, the URL to your database and the
DBMS you are using. The path to the TimeDB directory can be set by clicking on
the corresponding text area which opens up a file selection dialog box. Select any
file in the main directory of TimeDB. Write the name of the JDBC driver and the
URL in the corresponding text areas and select the DBMS you are using. Press
Save to save this data.

Now you can connect to your database account. Select Open DB in menu
TimeDB. A window appears where you can enter your login and password (if there
is one needed). Click the ok button, and after a short while the status information
Database opened will be displayed in the result window.

The next step is to add the metadata needed by TimeDB to your database account.
You have to select the Create DB menu item in menuTimeDB which starts to
create the necessary tables and inserts metadata to your database.

If all of the above steps have been successfully completed, you can use TimeDB to
store and query temporal data. The directory demos contains example queries and
statements.

Using the Input Text Area

Temporal SQL statements can be written to the input text area in the main window
of TimeDB. Note that in any case only the first statement will be executed. Each
statement must end with a semicolon. If you would like to execute several
statements at once, you can write them to a file and execute the file.
The first statement in the input text area can be executed by pushing buttonExecute
in the button panel. Push Clear to clear the input text area. The results of your
statement are displayed in the result window.

10 ©TimeConsult

Figure 1 : Main Window of TimeDB

Executing a File

To execute temporal SQL statements stored in a file, choose item Execute File in
menu File. A file selection dialog box opens up where you can select the file to be
executed. The output will be written into the result window.

Input
Text
Area

Button
Panel

Menus

11 ©TimeConsult

Using the API of TimeDB 2.0

In order to use TimeDB 2.0 to support temporal queries, temporal data definition
and temporal data manipulation statements in your Java applications, you can
access the temporal data via TimeDBÕs native call interface TDBCI. TDBCI is a
simple way to execute any ATSQL2 statement via the TimeDB frontend on any of
the supported commercial DBMS.
Note that if you use the API, a log file is written containing useful information in
case the system does not properly run.

Setting up the environment

First, you have to add TimeDBÕs Java classes to the classpath which is used by
your Java application. Add the path to the directory containing TimeDBÕs classes,
e. g.

C:\TimeDB2.0B4\classes

and the path to the JDBC driver for the DBMS you use to the corresponding
classpath.
The functionality supported by TDBCI is described in the following sections.

The TimeDB Call Interface (TDBCI)

In folder docu/Interface, you find the interface class which describes the TDBCI
object of TimeDB 2.0.It contains 6 public instance methods you can use once you
have created such an object in your Java application. These are

/* Setting the preferences : */
public boolean setPrefs(String Path, int DBMS,
 String JDBCDriver, String URL);

/* Initialise DB with Metadata : */
public boolean createDB();
public boolean clearDB();

/* Open/Close Database : */
public boolean openDB(String Login, String Password);
public void closeDB();

/* Execute an ATSQL statement : */
public ResultSet execute(String stmt);

12 ©TimeConsult

The first time you use TimeDB 2.0, you have to set the preferences and create the
metadata in the database you will use. This needs to be done only once. To do
this, you have to use the methods setPrefs and createDB.
For the preferences, you must specify four items: the path to the directory
containing TimeDB, the type of DBMS you use, the JDBC driver and the URL. After
that, you can access the database using the openDB method. Next thing to do is
creating the metadata for TimeDB. Just call the method createDB. This
automatically creates the necessary metadata tables and fills them with metadata.

Now you can execute ATSQL2 statements using the method execute. It returns an
object of type ResultSet (note that TimeDBÕs class ResultSet does not correspond
to class ResultSet implemented for JDBC drivers). In case you execute a query, the
ResultSet object contains the rows of the result table. Otherwise it contains a
message telling you that the statement has been properly execute or Ð in case of
an error Ð returns the error message.

Method clearDB can be used to delete the metadata from your database. Method
closeDB should be used to log out from the database.

The following section gives examples for the use of each of these methods.

An Example

In folder docu/Interface, you find the file Demo.java which contains examples of
how you should use the TDBCI. We now shortly discuss the main steps of this
demo file.

Creating a TDBCI Object

In order to use the TDBCI call interface in your applications, you first have to create
an interface object. This is done the following way:

TDBCI t = new TDBCI();

Object t is the TDBCI object we will use in the following to access the database via
TimeDB.

Setting the Preferences

The first time you use TimeDB 2.0, you have to set the preferences in order to tell
TimeDB where it can find important files (path), which DBMS you are using
(1=Oracle, 2=Sybase, 3=CloudscapeÕs JBMS), what the corresponding JDBC driver
is (JDBCDriver) and where TimeDB can find the running DBMS instance (URL).

13 ©TimeConsult

In our demo, we have installed TimeDB on a Windows NT platform in directory
C:\TimeDB2.0B4\. We use an Oracle DBMS and the JDBC driver is
oracle.jdbc.driver.OracleDriver. The port to access the DBMS instance is 1521 and
the corresponding TNS name is ORCL. This leads to the following settings:

t.setPrefs(
 "C:\\TimeDB2.0B4\\", // Path to TimeDB2.0 directory
 1, // Using Oracle DBMS
 "oracle.jdbc.driver.OracleDriver", // Oracle's JDBC driver
 "jdbc:oracle:thin:1521:ORCL" // URL to access DBMS instance
)

Opening and closing a Database

The following statement opens the database for user scott (password is tiger):

t.openDB("scott", "tiger")

To close the database, simply execute the command

t.closeDB()

Creating the Metadata

The first time you use TimeDB for a specific database (e.g. scottÕs database), you
have to create the necessary metadata by executing the following command:

t.createDB()

Once you want to delete the metadata again, simply execute the command

t.clearDB()

Queries and Query results

Executing queries against your temporal database consists of the following steps:
execute the query and access the resulting table.
Executing a query (or any other statement) is done using the execute method of the
TDBCI object:

ResultSet output = t.execute("VALIDTIME SELECT * FROM p;");

The result is returned in a ResultSet object.

Accessing the resulting table can be done in two ways: create a string representing
the result in a tabular format, or iterate through the resulting rows and columns. To

14 ©TimeConsult

create a string containing the data simply use the createString method of the
ResultSet object:

output.createString()

Iterating through the result table needs more Java code to be written. Two loops Ð
one going through the rows and one going through the corresponding columns Ð
have to be implemented:

ResultRow row = output.firstRow(); // Get first row of result table

while (row != null) {
 int i = 0;
 String value = null;

 while ((value = row.getColumnValue(i)) != null) // Get next value in row
 {
 // Print value
 System.out.print(value);
 // Print type of value
 System.out.print(" [" + row.getColumnType(i) + "] ");
 i++; // Next column
 }

 row = output.nextRow(row); // Get next row of result table
 System.out.println();
}

In the above Java code, the outer loop iterates through the rows of the result set.
The loop variable row is initialized using method firstRow. The next row is accessed
using method nextRow. In case of an error, method firstRow returns null. The
corresponding error message can be accessed using method createString (see
above).

The inner loop iterates through the columns of a specific row. Method
getColumnValue(i) returns the value of column i (i >= 0). If the specified column is
not available (i < 0 or i >= row.getLength()), method getColumnValue returns null.
Method getColumnType returns the type of the column specified. The following
column types are supported:

· number · smallint · float
· numeric · integer · double
· longint · real · interval
· date · period · char
· varchar

Note that for the time being, the returned values of method getColumnValue are
always of Java type String, however.

15 ©TimeConsult

The Temporal Aspects of TimeDB 2.0

Timeflag semantics

The language ATSQL2 distinguishes three different modes to evaluate an SQL
statement: snapshot semantics, sequenced and nonsequenced semantics.
Snapshot semantics means that only the database state valid at time instant now
is evaluated. This corresponds to evaluating a non-temporal SQL statement over a
non-temporal database containing data about the current state of the real world. In
ATSQL2, a statement without a time flag has snapshot semantics.
Sequenced semantics means that an SQL statement is evaluated over all
database states stored in the temporal database. A query with sequenced
semantics thus returns temporal data. In ATSQL2, a sequenced valid-time
statement starts with timeflag validtime.
Statements with nonsequenced semantics treat the timestamps just as any other
user defined attribute. The algebra operations have non-temporal semantics. This
allows the comparison of different database states with each other. In ATSQL2, a
nonsequenced valid-time statement starts with timeflag nonsequenced validtime.

Table 1 gives an overview of the different timeflags together with the semantics of
the corresponding statements.

Nesting of Timeflags

Usually, timeflags are propagated from the outside to the inside of nested queries.
For example, in the query

validtime
 (select * from employees)

union
É

the timeflag validtime is propagated to the inner select statement.
Timeflags, however, may also be overwritten. In the query

validtime
 (nonsequenced validtime period [1980-1990)

 select * from employees)
union
É

the inner query has a different timeflag than the outer query. First, the inner select
statement is evaluated using nonsequenced semantics. Due to the interval

16 ©TimeConsult

expression in the timeflag, it returns a valid-time table. The outer query then
calculates the valid-time union of this table and the rest of the outer query.

Timeflag Semantics

No flag Snapshot semantics
Algebra operations have non-temporal
semantics. Queries only refer to the
currently valid database state and return
non-temporal tables. Modification
statements only refer to the currently valid
database state.

nonsequenced validtime Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries refer to all database
states and return non-temporal tables.
Modification statements do not interpret
timestamps.

nonsequenced validtime <interval exp> Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries refer to all database
states and return valid-time tables where
each tupleÕs valid-time corresponds to
<interval exp>. Modification statements
do not interpret timestamps and set
timestamps of modified tuples to
<interval exp>.

validtime Sequenced semantics
Algebra operations have temporal
semantics. Queries refer to all database
states and return valid-time tables.
Modification statements update each
database state separately.

validtime <interval exp> Sequenced semantics
Algebra operations have temporal
semantics. Queries refer to the database
states valid during <interval exp> and
return valid-time tables. Modification
statements update each database state
during <interval exp>.

Table 1 : Timeflags

17 ©TimeConsult

Temporal expressions and comparison operations

TimeDB supports spans (a duration of time, e. g. two years and one month),
events (a time instant, e. g. June 12, 1964) and time intervals (e. g. from 1980 to
1990). Spans, events and time intervals are treated just as any other values such
as strings, integers etc. and thus may appear anywhere in select and where
clauses where expressions are allowed.

According to the syntax given at the end of this document, a legal time span -
specified as a constant value - is, for example,

interval 2 year 1 month.

Additionally, values of type span stored in tables may be referenced. Last but not
least, new spans may be calculated using the operators +, -, * and /. Allowed are
the following combinations:

span + span -> span
span - span -> span
number * span -> span
span / number -> span

Spans may be compared with other spans using the comparison operations =, <,
>, <=, >= and <>.

The expressions
date Ô1964-06-12Õ,

timestamp Ô1964-06-12 12:30:24Õ and
date 1964/6/12~12:30:24

are legal event values. While the first two correspond to the SQL standard, the third
is used for output of event values and may also be used for input. It is special in
the sense that only the significant part of an event is displayed. For example, 1964
actually is shorthand for 1964/1/1~00:00:00.
New events may be calculated by adding or subtracting a time span :

event + span -> event
event - span -> event

Events may be compared with each other using the comparison operations
precedes and =.

The constant
period [1980-1990)

is a legal time interval. TimeDB displays time intervals as [1980-1990). Time
intervals are closed on the lower and open on the upper bound. Time intervals

18 ©TimeConsult

may be compared either with other time intervals using the comparison operations
precedes, overlaps, meets, contains and =, or they may be compared with events.
In the latter case, the following combinations are supported:

interval contains event -> boolean
interval precedes event -> boolean
event precedes interval -> boolean

Calendar

TimeDB 2.0 supports a simple minimal calendar. The calendar starts with year 1.
Each month has 30 days and each day 24 hours (0 to 23). Expressions calculating
new events may lead to illegal values which are represented as << NAD >> (not a
date). The smallest non-decomposable time unit is a second.

19 ©TimeConsult

A. Literature

[HCF97] G. Hamilton, R. Cattell, M. Fisher : JDBC Database Access with Java.
Addison Wesley.
July 1997.

[SBJS96a] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Valid Time to
SQL/Temporal (Change Proposal).
ANSI X3H2-96-501r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-146r2.
November 1996.

[SBJS96b] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Transaction
Time to SQL/Temporal (Change Proposal).
ANSI X3H2-96-502r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-147r2.
November 1996.

[SBJS98] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Transitioning
Temporal Support in TSQL2 to SQL3.
In Temporal Databases : Research and Practice.
O. Etzion, S. Jajodia and S. Sripada, editors.
LNCS 1399, Springer Verlag.
March 1998.

[S98] Andreas Steiner : A Generalisation Approach to Temporal Data
Models and their Implementations.
Ph. D. Thesis, ETH Z�rich.
November 1997.

20 ©TimeConsult

B. Grammar
The following syntax defines the legal temporal SQL statements supported in
TimeDB 2.0 Beta 4:

statement ::= (query | ddl | dml | control) ';'

Query

timeFlag ::= ['nonsequenced'] 'validtime' [scalarExp]

coal ::= '(' 'period' ')'

query ::= [timeFlag] queryExp
queryExp ::= queryTerm { ('union' | 'except') queryTerm }
queryTerm ::= queryFactor { 'intersect' queryFactor }
queryFactor ::= '(' query ')' [coal] | sfw

sfw ::= 'select' selectItemList
 'from' tableRefList
 ['where' condExp]
 ['group' 'by' groupByList] /* Not supported for JBMS */
 ['having' condExp] /* Not supported for JBMS */

selectItemList ::= '*' | selectItem { ',' selectItem }
selectItem ::= scalarExp [alias]

tableRefList ::= tableRef { ',' tableRef }
tableRef ::= '(' query ')' [coal] alias [colList] |
 identifier [coal] [alias]

alias ::= ['as'] identifier

condExp ::= condTerm { 'or' condTerm }
condTerm ::= condFactor { 'and' condFactor }
condFactor ::= ['not'] simpleCondFactor
simpleCondFactor ::=
 '(' condExp ')' |
 'exists' '(' query ')' |
 scalarExp condOp scalarExp |
 scalarExp condOp ('all' | 'any' | 'some') '(' query ')' |
 scalarExp ['not'] 'between' scalarExp 'and' scalarExp |
 scalarExp ['not'] 'in' '(' query ')

condOp ::= '<' | '>' | '<=' | '>=' | '<>' | '=' |
 'precedes' | 'overlaps' | 'meets' | 'contains'

groupByList ::= colRef { ',' colRef }

scalarExp ::= term { ('+' | '-') term }
term ::= factor { ('*' | '/') factor }
factor ::= [('+' | '-')] simpleFactor

21 ©TimeConsult

simpleFactor ::= colRef |
 const |
 '(' scalarExp ')' |
 'abs' '(' scalarExp ')'

colRef ::= identifier ['.' identifier]

const ::= integer |
 float |
 ''' string ''' |
 interval |
 event |
 span

interval ::= 'validtime' '(' identifier ')' |
 'period' intervalExp |
 'period' '(' scalarExp ',' scalarExp ')'
intervalExp ::= '[' time '-' time ')'
time ::= timeDBDate | eventExp

event ::= ('begin' | 'end') '(' scalarExp ')' |
 ('first' | 'last') '(' scalarExp ',' scalarExp ')' |
 eventExp

eventExp ::= 'now' |
 'beginning' |
 'forever' |
 'date' dateString |
 'date' timeDBDate |
 'timestamp' timestampString

dateString ::= ''' YYYY '-' MM '-' DD '''
timestampString ::= ''' YYYY '-' MM '-' DD ' ' HH ':' MM ':' SS '''
timeDBDate ::= YYYY ['/' MM ['/' DD
 ['~' HH [':' MM [':' SS]]]]]

span ::= 'interval' spanExp
spanExp ::= integer qualifier { integer qualifier }
qualifier ::= 'year' |
 'month' |
 'day' |
 'hour' |
 'minute' |
 'second'

Data Definition

ddl ::= ddlTable | ddlView | 'drop' 'table' | 'drop' 'view'

ddlTable ::= 'create' 'table' identifier (tableDef | ddlQuery)
ddlView ::= 'create' 'view' identifier ddlQuery

tableDef ::= '(' colDefList ')' ['as' 'validtime']
ddlQuery ::= ['(' colList ')'] 'as' query

22 ©TimeConsult

colDefList ::= colDef { ',' (colDef | tableConstraint) }
colDef ::= identifier dataType [columnConstraint]

columnConstraint ::= ['constraint' identifier]
 ['validtime'] (primKeyCol |
 refIntegrity |
 checkConstraint)
tableConstraint ::= ['validtime'] (primKeyTab |
 foreignKey |
 checkConstraint)

primKeyCol ::= 'primary' 'key'
primKeyTab ::= 'primary' 'key' '(' colList ')'

refIntegrity ::= 'references' identifier '(' identifier ')'
foreignKey ::= 'foreign' 'key' '(' colList ')'
 'references' identifier '(' colList ')'

checkConstraint ::= 'check' '(' condExp ')'

colList ::= col { ',' col }
col ::= identifier

dataType ::= 'number' [typeLength] | /* Oracle */
 'numeric' [typeLength] | /* Sybase */
 'smallint' | /* Cloudscape's JBMS */
 'longint' | /* Cloudscape's JBMS */
 'integer' |
 'real' |
 'float' |
 'interval' |
 'date' |
 'period' |
 'char' [typeLength] |
 'varchar' [typeLength]

typeLength ::= '(' integer ')'

Data Manipulation

dml ::= [timeFlag] (insert | delete)

insert ::= 'insert' 'into' identifier valExp
valExp ::= 'values' '(' valList ')' | query

delete ::= 'delete' 'from' identifier ['where' condExp]

Control

control ::= 'commit' | 'rollback'

23 ©TimeConsult

C. TimeDBÕs API
The interface class of the TimeDB Call Interface (TDBCI) is:

public interface TDBCInterface {

 /***/
 /*************** PUBLIC INSTANCE METHODS *************/
 /***/

 /* Set TimeDB Preferences */
 public boolean setPrefs(String Path, int DBMS,
 String JDBCDriver, String URL);
 /* Oracle : DBMS = 1 */
 /* Sybase : DBMS = 2 */
 /* Cloudscape's JBMS : DBMS = 3 */

 /* Initialise DB with Metadata : */
 public boolean createDB();
 public boolean clearDB();

 /* Open/Close Database : */
 public boolean openDB(String Login, String Password);
 public void closeDB();

 /* Execute an ATSQL statement : */
 public ResultSet execute(String stmt);

}

The interface class of class ResultSet is:

public interface ResultSetInterface {

 /***/
 /************** PUBLIC INSTANCE METHODS **************/
 /***/

 public ResultRow firstRow();

 public ResultRow nextRow(ResultRow row);

 public String createString();

}

24 ©TimeConsult

The interface class of class ResultRow is:

public interface ResultRowInterface {

 /***/
 /************** PUBLIC INSTANCE METHODS **************/
 /***/

 public int getLength(); // Get number of columns in row

 public String getColumnValue(int col);
 // Returns null if col < 0 or col >= length

 public String getColumnType(int col);
 // Returns null if col < 0 or col >= length

}

